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We state the following conjecture and prove it for the case where ¢ is a proper prime power !
Let A4 be anonsingular nby n matrix over the finite field GF,, q=4, then there exists a vector
x in (GF,)" such that both x and Ax have no zero component.

In this note we consider the following conjecture:

Conjecture 1.- Let A be a nonsingular n by n matrix over the finite field GF,, q=4,
then there exists a vector x in (GF,)" such that both x and Ax have no zero component.

Notice that there are easy examples showing that the assertion of the con-
jecture is false for g=3. We have reached this conjecture while trying to generalize
some simple properties of sparse graphs to more general matroids. Specifically:
a graph whose edge set is the union of two forests is clearly 4-colorable. In general,
the chromatic number of a matroid whose element set is the union of two in-
dependent sets can be bigger. This claim can be verified by checking the chromatic
polynomial of the uniform matroid U,,,, (see [4] for the relevant definitions).
However, if such a matroid is representable over a field GF, for which conjecture
1 holds then its chromatic number is at most g, since the conjccture implies that

its critical number over GF, is 1 ([4], Chapter 15.5).
The conjecture also seems, to be of interest for its own. The case g=5 was

stated as an open problem by F. Jaeger [3]. All we could do so far is to prove the
following partial result given in Theorem 1 below. Our proof resembles the ones
given in [2], [1], but contains several additional ideas.-

Theorem 1. Conjecture 1 holds for the case where q is not a prime, that is q=p* for
aprimep and k=2.

Proof. Let A={a,;} be an n by n nonsingular matrix over GF,, where q=r%
k=2 and p is a prime. Define the polynomial P, (X7, Xz; ..., X,) as follows:

PuXs, Xar o X =11 (f_z1 a,1%)).

Denote by L the set of all ordered partitions of » into the sum of # non-negative
integer parts, that is:

L={a=(,...2)| 3 ay=n,a, is an integer = 0}.
Jj=1
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Let 4, be the n by n matrix whose columns are «; copies of the j’th column of 4
for every 1=j=n. E.g., Ay,1,...15=4 and A 1,1,...,1) is obtained as the second
column of A4 is replaced by a copy of the first one. Also define for every

a=(ay, ..., %,)EL c, to be the coefficient of JJ X7 intheexpansion of Py(Xj, ..., X,)-
i=1
It is a straightforward routine to verify:

Claim 1. For every a=(aty, ..., 0, )EL
Per (4)) = ¢, [] (3,),
j=t

where Per (A,) is the permanent of the matrix A,.

The «;’s are natural numbers and by a;! we mean its value modulo p as an
element of GF, considered as a subfield of GF,. For a natural number m greater
or equal to p, m=0 (mod p), which yields:

Claim 2. Let a=(xy, ..., %,)EL. If for some j o;=p then Per(4,)=0.

Let A’ be the matrix obtained from A by adding the j,’th column multiplied by
a scalar s€GF, to the j,’th column, for some 1=j,, j,=n. Clearly Per(4)=
=Per (4)+s Per (4z=(ar, ....en)) Where a; =2, o, =0 and o;=1 for j#j, j.
Recursively the permanent of every matrix obtained from A by repeated applications
of elementary column operations can be represented as a linear combination

2 S, Per (4,), where s,EGF,. Since A is nonsingular the identity matrix is ob-
a€L
tained from A4 by elementary column operations and hence 1= 2 s, Per (4)).

Applying Claim 2 we obtain: ,
= 2 s Per(4,)
a€L’
where L’ is the subset of L consisting of the partitions a=(«, ..., a,) for which
a;<p, 1=j=n. Therefore, there exists, a€ L’ with Per (4,)#0. By Claim 1 this
implies:

Claim 3. In the expansion of Py(Xy, ..., X,) there is a monomial c, J[ X! with
i=1
¢,#0 and oy~<p for every j.

Define now
P:l(Xls seey Xn) = (ZIXJ)PA(XI: seny Xn)'

For a vector x=(xy, ..., X )E(GF,)" Pi(x)= PA(xl, ...s X,) 1is the product of all
the 2n components of both x and Ax Theorem 1 is thus equivalent to the existence
of a vector x for which P;(x)>20. :
It is easy to show (by induction on #) that a polynomial in variables over
GF, gives the value 0 for every substitution if and only if it can be reduced to the
zero polynomial (i.e., the one with all the coefficients equal to 0) by the relations
X=X for every variable X. In the expansion of P;(Xj, ..., X,) there is, according
to Clalrn 3, a monomial ¢, JIX}’ with ¢,#0 and all B;atmostp (B;=a;+1). Since
g=p*>p this monomial cannot be the subject to a reduction by any relation
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X}=X;. On the other hand P;(X;, ..., X,) is homogeneous and thus a term similar
to this monomial cannot be obtained out of another by these relations. It turns out
that P{(X, ..., X,) cannot be reduced to the zero polynomial and thus there exists
a vector x as required. J|

Remarks

By modifying the above proof we can prove the following extension of
Theorem 1, which may help in settling the general case of Conjecture 1.

Proposition 1. Let A be a nonsingular n by n matrix over a field F of characteristic p.
Let R, F,, ..., E,CF be arbitrary subsets of F, each of cardinality p, and let fi, f, ...
o fy be elements of F. Then there exists a vector x=(%y, Xg, ...» X,) With X;€F;
such that the i’th component of Ax is different from f,.

The proof is almost identical to that of Theorem 1. Only Pi(X;, ..., X,) should be
replaced by:

Jljl fg, &= .-Q ((,é; % X)~f)

Although this polynomial is not homogeneous, the proof considers only terms of
maximal degree and the result follows. |

Even stronger restrictions can be forced on the components of x and Ax
using the following statement, in which nonsingularity is replaced by permanent
#0. The (similar) proof is omitted.

Proposition 2, Let A be an n by n matrix over a field F and suppose Per (A)=0.
Let F, F,, ..., F,CF be arbitrary subsets of F, each of cardinality 2, and let fi, fa, ...
vos Ju be elements of F. Then there exists a vector x=(xy, Xy, ..., X,) With x,€F;
such that the j’th component of Ax is different from f;. |

Propositions 1 and 2 can be used to show that if g=p*, k=2 and A is a
nonsingular » by # matrix over GF, then there are many vectors x&€(GF,)” such that
both x and Ax have no zero component. For example, for ¢g=4 one can easily
show that there are at least (3/2)" such vectors x. We omit the details.
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